Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,943 result(s) for "Brain-derived neurotrophic factor"
Sort by:
Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer
Brain-derived neurotrophic factor (BDNF) is one of the most distributed and extensively studied neurotrophins in the mammalian brain. BDNF signals through the tropomycin receptor kinase B (TrkB) and the low affinity p75 neurotrophin receptor (p75NTR). BDNF plays an important role in proper growth, development, and plasticity of glutamatergic and GABAergic synapses and through modulation of neuronal differentiation, it influences serotonergic and dopaminergic neurotransmission. BDNF acts as paracrine and autocrine factor, on both pre-synaptic and post-synaptic target sites. It is crucial in the transformation of synaptic activity into long-term synaptic memories. BDNF is considered an instructive mediator of functional and structural plasticity in the central nervous system (CNS), influencing dendritic spines and, at least in the hippocampus, the adult neurogenesis. Changes in the rate of adult neurogenesis and in spine density can influence several forms of learning and memory and can contribute to depression-like behaviors. The possible roles of BDNF in neuronal plasticity highlighted in this review focus on the effect of antidepressant therapies on BDNF-mediated plasticity. Moreover, we will review data that illustrate the role of BDNF as a potent protective factor that is able to confer protection against neurodegeneration, in particular in Alzheimer's disease. Finally, we will give evidence of how the involvement of BDNF in the pathogenesis of brain glioblastoma has emerged, thus opening new avenues for the treatment of this deadly cancer.
Potential therapeutic uses of BDNF in neurological and psychiatric disorders
The growth factor brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase receptor type B (TRKB) are actively produced and trafficked in multiple regions in the adult brain, where they influence neuronal activity, function and survival throughout life. The diverse presence and activity of BDNF suggests a potential role for this molecule in the pathogenesis and treatment of both neurological and psychiatric disorders. This article reviews the current understanding and future directions in BDNF-related research in the central nervous system, with an emphasis on the possible therapeutic application of BDNF in modifying fundamental processes underlying neural disease.
NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses
Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic NMDAR (N-methyl-D-aspartate receptor) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder, although the underlying mechanism is unclear. Depressed patients report the alleviation of major depressive disorder symptoms within two hours of a single, low-dose intravenous infusion of ketamine, with effects lasting up to two weeks, unlike traditional antidepressants (serotonin re-uptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current therapies for major depressive disorder and faster-acting antidepressants are needed, particularly for suicide-risk patients. The ability of ketamine to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. Here we show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models, and that these effects depend on the rapid synthesis of brain-derived neurotrophic factor. We find that the ketamine-mediated blockade of NMDAR at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII), resulting in reduced eEF2 phosphorylation and de-suppression of translation of brain-derived neurotrophic factor. Furthermore, we find that inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings indicate that the regulation of protein synthesis by spontaneous neurotransmission may serve as a viable therapeutic target for the development of fast-acting antidepressants.
Neurotrophic factor control of satiety and body weight
Energy balance--that is, the relationship between energy intake and energy expenditure--is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity.
BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases
Increasing evidence suggests that synaptic dysfunction is a key pathophysiological hallmark in neurodegenerative disorders, including Alzheimer's disease. Understanding the role of brain-derived neurotrophic factor (BDNF) in synaptic plasticity and synaptogenesis, the impact of the BDNF Val66Met polymorphism in Alzheimer's disease-relevant endophenotypes - including episodic memory and hippocampal volume - and the technological progress in measuring synaptic changes in humans all pave the way for a 'synaptic repair' therapy for neurodegenerative diseases that targets pathophysiology rather than pathogenesis. This article reviews the key issues in translating BDNF biology into synaptic repair therapies.
BDNF at the synapse: why location matters
Neurotrophic factors, a family of secreted proteins that support the growth, survival and differentiation of neurons, have been intensively studied for decades due to the powerful and diverse effects on neuronal physiology, as well as their therapeutic potential. Such efforts have led to a detailed understanding on the molecular mechanisms of neurotrophic factor signaling. One member, brain-derived neurotrophic factor (BDNF) has drawn much attention due to its pleiotropic roles in the central nervous system and implications in various brain disorders. In addition, recent advances linking the rapid-acting antidepressant, ketamine, to BDNF translation and BDNF-dependent signaling, has re-emphasized the importance of understanding the precise details of BDNF biology at the synapse. Although substantial knowledge related to the genetic, epigenetic, cell biological and biochemical aspects of BDNF biology has now been established, certain aspects related to the precise localization and release of BDNF at the synapse have remained obscure. A recent series of genetic and cell biological studies have shed light on the question-the site of BDNF release at the synapse. In this Perspectives article, these new insights will be placed in the context of previously unresolved issues related to BDNF biology, as well as how BDNF may function as a downstream mediator of newer pharmacological agents currently under investigation for treating psychiatric disorders.
Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models
Recent clinical studies demonstrate that serum levels of brain-derived neurotrophic factor (BDNF) are significantly decreased in patients with major depressive disorder (MDD) and that antidepressant treatments reverse this effect, indicating that serum BDNF is a biomarker of MDD. These findings raise the possibility that serum BDNF may also have effects on neuronal activity and behavior, but the functional significance of altered serum BDNF is unknown. To address this issue, we determined the influence of peripheral BDNF administration on depression- and anxiety-like behavior, including the forced swim test (FST), chronic unpredictable stress (CUS)/anhedonia, novelty-induced hypophagia (NIH) test, and elevated-plus maze (EPM). Furthermore, we examined adult hippocampal neurogenesis as well as hippocampal and striatal expression of BDNF, extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), in order to determine whether peripherally administered BDNF produces antidepressant-like cellular responses in the brain. Peripheral BDNF administration increased mobility in the FST, attenuated the effects of CUS on sucrose consumption, decreased latency in the NIH test, and increased time spent in the open arms of an EPM. Moreover, adult hippocampal neurogenesis was increased after chronic, peripheral BDNF administration. We also found that BDNF levels as well as expression of pCREB and pERK were elevated in the hippocampus of adult mice receiving peripheral BDNF. Taken together, these results indicate that peripheral/serum BDNF may not only represent a biomarker of MDD, but also have functional consequences on molecular signaling substrates, neurogenesis, and behavior.
Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer's disease: a meta-analysis study (N=7277)
Studies suggest that dysfunction of brain-derived neurotrophic factor (BDNF) is a possible contributor to the pathology and symptoms of Alzheimer's disease (AD). Several studies report reduced peripheral blood levels of BDNF in AD, but findings are inconsistent. This study sought to quantitatively summarize the clinical BDNF data in patients with AD and mild cognitive impairment (MCI, a prodromal stage of AD) with a meta-analytical technique. A systematic search of Pubmed, PsycINFO and the Cochrane Library identified 29 articles for inclusion in the meta-analysis. Random-effects meta-analysis showed that patients with AD had significantly decreased baseline peripheral blood levels of BDNF compared with healthy control (HC) subjects (24 studies, Hedges' g=-0.339, 95% confidence interval (CI)=-0.572 to -0.106, P=0.004). MCI subjects showed a trend for decreased BDNF levels compared with HC subjects (14 studies, Hedges' g=-0.201, 95% CI=-0.413 to 0.010, P=0.062). No differences were found between AD and MCI subjects in BDNF levels (11 studies, Hedges' g=0.058, 95% CI=-0.120 to 0.236, P=0.522). Interestingly, the effective sizes and statistical significance improved after excluding studies with reported medication in patients (between AD and HC: 18 studies, Hedges' g=-0.492, P<0.001; between MCI and HC: 11 studies, Hedges' g=-0.339, P=0.003). These results strengthen the clinical evidence that AD or MCI is accompanied by reduced peripheral blood BDNF levels, supporting an association between the decreasing levels of BDNF and the progression of AD.
Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer's disease induced by aβ1-42
An emerging body of data suggests that the early onset of Alzheimer's disease (AD) is associated with decreased brain-derived neurotrophic factor (BDNF). Because BDNF plays a critical role in the regulation of high-frequency synaptic transmission and long-term potentiation in the hippocampus, the up-regulation of BDNF may rescue cognitive impairments and learning deficits in AD. In the present study, we investigated the effects of hippocampal BDNF in a rat model of AD produced by a ventricle injection of amyloid-β1-42 (Aβ1-42). We found that a ventricle injection of Aβ1-42 caused learning deficits in rats subjected to the Morris water maze and decreased BDNF expression in the hippocampus. Chronic intra-hippocampal BDNF administration rescued learning deficits in the water maze, whereas infusions of NGF and NT-3 did not influence the behavioral performance of rats injected with Aβ1-42. Furthermore, the BDNF-related improvement in learning was ERK-dependent because the inhibition of ERK, but not JNK or p38, blocked the effects of BDNF on cognitive improvement in rats injected with Aβ1-42. Together, our data suggest that the up-regulation of BDNF in the hippocampus via activation of the ERK signaling pathway can ameliorate Aβ1-42-induced learning deficits, thus identifying a novel pathway through which BDNF protects against AD-related cognitive impairments. The results of this research may shed light on a feasible therapeutic approach to control the progression of AD.
Brain-derived neurotrophic factor in neurodegenerative diseases
Changes in the levels and activities of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), have been described in a number of neurodegenerative disorders, including Huntington disease, Alzheimer disease and Parkinson disease. It is only in Huntington disease, however, that gain-of-function and loss-of-function experiments have linked BDNF mechanistically with the underlying genetic defect. Altogether, these studies have led to the development of experimental strategies aimed at increasing BDNF levels in the brains of animals that have been genetically altered to mimic the aforementioned human diseases, with a view to ultimately influencing the clinical treatment of these conditions. In this article, we will review the current knowledge about the involvement of BDNF in a number of neurodegenerative diseases, with particular emphasis on Huntington disease, and will provide the rationale for and discuss the problems in proposing BDNF treatment as a beneficial and feasible therapeutic approach in the clinic.